

Hi Friends!

- Welcome to CSE 474/574, Introduction to Machine Learning
- My name is Kenny, or Prof. Joseph
- Some boring facts about me:
 - I am, perhaps unsurprisingly, not a very good dancer.
 - I am sitting at a kitchen table while making these slides
 - I like the color orange.

Plan today

- Intro to machine learning
- Intro to me/my teaching style
- Syllabus/Course review
- Start: A high-level example to keep in mind when we get bogged down in the details

Machine Learning in the real world

- <u>https://quickdraw.withgoogle.com/</u>
- <u>https://www.tiktok.com/foryou</u>
- <u>https://twitter.com/wowitsmrinal/status/1287175391040290816</u>
- https://www.youtube.com/watch?v=cQ54GDm1eL0
- Any others?

Potash, E., Ghani, R., Walsh, J., Jorgensen, E., Lohff, C., Prachand, N., & Mansour, R. (2020). Validation of a Machine Learning Model to Predict Childhood Lead Poisoning. *JAMA network open*, *3*(9), e2012734-e2012734.

Predicting poverty

Satellite images can be used to estimate wealth in remote regions.

Neural network learns features in satellite images that correlate with economic activity

Convolutional Neural Network (CNN) associates features from daytime photos with nightlight intensity

Satellite nightlights are a proxy for economic activity

Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., & Ermon, S. (2016). Combining satellite imagery and machine learning to predict poverty. *Science*, *353*(6301), 790-794.

2/6/22

Machine learning is amazing!

Few questions here

- What is machine learning?(How) does it work?
- Is it always amazing?

Few questions here

What is machine learning? (How) does it work? Is it always amazing?

MIT Technology Review

Subscribe

ARTIFICIAL INTELLIGENCE

Hundreds of AI tools have been built to catch covid. None of them helped.

Some have been used in hospitals, despite not being properly tested. But the pandemic could help make medical AI better.

By Will Douglas Heaven			
July 30, 2021			

Fig. 1. GFT overestimation. GFT overestimated the prevalence of flu in the 2012–2013 season and overshot the actual level in 2011–2012 by more than 50%. From 21 August 2011 to 1 September 2013, GFT reported overly high flu prevalence 100 out of 108 weeks. (**Top**) Estimates of doctor visits for ILI. "Lagged CDC" incorporates 52-week seasonality variables with lagged CDC data. "Google Flu + CDC" combines GFT, lagged CDC estimates, lagged error of GFT estimates, and 52-week seasonality variables. (**Bottom**) Error [as a percentage of CDC baseline: (estimate by CDC)/CDC data]. Both alternative models have much less error than GFT alone. Mean absolute error (MAE) during the out-of-sample period is 0.486 for GFT, 0.311 for lagged CDC, and 0.232 for combined GFT and CDC. All of these differences are statistically significant at P < 0.05. See SM.

Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The parable of Google Flu: traps in big data analysis. *Science*, *343*(6176), 1203-1205.

Fig. 1. Number of chronic illnesses versus algorithm-predicted risk, by race. (**A**) Mean number of chronic conditions by race, plotted against

Research is scarce on the issue of machine scoring bias, partly due to the secrecy of the companies that create these systems. Test scoring vendors closely guard their algorithms, and states are wary of drawing attention to the fact that algorithms, not humans, are grading students' work. Only a

Flawed Algorithms AreGrading Millions ofUnderscoreHindi spealStudents' Essays

Meanwhile, it tended to

underscore African Americans and, at various points, Arabic, Spanish, and Hindi speakers—even after attempts to reconfigure the system to fix the problem.

Fooled by gibberish and highly susceptible to human bias, automated

essay-scoring systems are being increasingly adopted, a

Motherboard investigation has found

"The BABEL Generator proved you can have complete incoherence, meaning one sentence had nothing to do with another," and still receive a high mark from the algorithms.

Figure 3. Wu and Zhang's "criminal" images (top) and "non-criminal" images (bottom). In the top images, the people are frowning. In the bottom, they are not. These types of superficial differences can be picked up by a deep learning system.

flip.com

Is it always amazing?

- No. If you...
 - Use a bad/the wrong model
 - Ask a dumb question
 - Use crappy data
- Your work will be, at best, useless

AFTER

Corollary: You have to know what you're doing and why you're doing it.

My aim in this class is to give you some insight into both of these.

More on my goals for us

My goal is for you (and me!) to 1) learn and 2) have fun.

- We will learn and have the most fun if we are both...
 - •Working hard, and smart, not long.
 - Engaged in lectures

•••

Me as an instructor

- I am not scary. Wish I was, but I'm not.
- I am not out to "get you". Seems pointless
- ^ But,
 - I am strict. Please do not take this personally.
 - Trust-but-verify. Please do not violate this trust
 - I have no tolerance for people making others feel not smart or not welcome.

I do not know you're struggling unless you tell me.

Few questions here

What is machine learning?

- (How) does it work?
- Is it always amazing?

Canonical Definition

"A computer program is said to **learn** from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

— Tom Mitchell, Professor at Carnegie Mellon University

Tom M Mitchell et al. "Machine learning. 1997". In: Burr Ridge, IL: McGraw Hill 45.37 (1997), pp. 870–877.

ML as a recipe creator

An algorithm is like a recipe. It takes "inputs" (the ingredients), performs a set of simple and (hopefully) well-defined steps, and then terminates after producing an "output" (the meal)

> A learning algorithm is a game of roulette on a 50 dimensional wheel that lands on a particular spot (a recipe) based completely on how it was trained, what examples it saw, and how long it took to search.

ML as generalization of (training) data

ML as generalization of (training) data

Figure 1.1: The general supervised approach to machine learning: a learning algorithm reads in training data and computes a learned function f. This function can then automatically label future text examples.

CIML, Chapter 1

Josie looks like she understand chairs. She does not. She cannot **generalize** beyond her training data.

ML as the production of intelligence from data

These images are taken from https://courses.cs.washington.edu/courses/cse416/18sp/lectures.html

ML as a composite of many things

These images are taken from http://www.cs.cmu.edu/~mgormley/courses/10601/schedule.html

ML Big Picture

Learning Paradigms:

What data is available and when? What form of prediction?

- supervised learning
- unsupervised learning
- semi-supervised learning
- reinforcement learning
- active learning
- imitation learning
- domain adaptation
- online learning
- density estimation
- recommender systems
- feature learning
- manifold learning
- dimensionality reduction
- ensemble learning
- distant supervision
- hyperparameter optimization

Theoretical Foundations:

What principles guide learning?

- probabilistic
- information theoretic
- evolutionary search
- ML as optimization

Pro	ble	m F	orm	ula	tion:

Facets of Building ML

Data prep

search

data

How to build systems that are

Training (optimization /

Hyperparameter tuning on

(Blind) Assessment on test

robust, efficient, adaptive,

Model selection

validation data

boo

cat

ord

ord

mu

mu

Systems:

effective?

3.

5.

What is the structure of our output prediction?

boolean	Binary Classification
categorical	Multiclass Classification
ordinal	Ordinal Classification
real	Regression
ordering	Ranking
multiple discrete	Structured Prediction
multiple continuou	us (e.g. dynamical systems)
both discrete &	(e.g. mixed graphical models

\LP, Speech, Computer /ision, Robotics, Medicine, iearch **Application Areas** Key challenges?

Big Ideas in ML:

Which are the ideas driving development of the field?

- inductive bias
- generalization / overfitting
- bias-variance decomposition
- generative vs. discriminative
- deep nets, graphical models
- PAC learning
- distant rewards

ML is many things to many people.

These images are taken from

http://www.cs.cmu.edu/~mgormley/cours es/10601/schedule.html

Corollary: There is more to ML than I can teach you in this class.

My aim is to give you the tools to understand and evaluate ML, even if I haven't taught you that specific math/method/paradigm/etc.

My focus will be on understanding the basics really well, and on giving you practical experience through the programming assignments

Few questions here

What is machine learning? (How) does it work? Is it always amazing?

https://www.reddit.com /r/machinelearningmem es/comments/mqy9u5/ machine_learning_pipeli nes/

10

BREAK! (3 minutes)

Syllabus/Course Review

Few questions here

What is machine learning? (How) does it work? Is it always amazing?

The ML Pipeline (one view)

Last part of the course

Case Study

Case Study 1 of many

Residential displacement occurs when individuals are forced, **involuntarily**, to leave their home.

We are the city of Buffalo. We want to reduce the impact of residential displacement on low income residents Potential ML questions - Supervised learning **2**

Supervised learning - can I predict an outcome from some inputs

If the outcome is...

- A category/set of discrete outcomes, this is classification
 - Given a picture of their brain, does this person have cancer, yes or no?

• A number, this is **regression**

How much will the price of this stock change tomorrow, given its prices over the last week?

Why forecast residential displacement?

- Buffalo, New York.
 - From 2010 to 2016, one area in Buffalo (the West Side) saw a loss of 77% of its Black population.
- Often due to gentrification
 - low-income regions attracts new residents and investment.
 - Rising home prices drive out the poor, usually minorities.

2/6/22

41

We believe that if we can figure out **where** residential displacement is happening, then we can construct policy to try to mitigate it's impact

It is very hard to determine whether or not someone moved 1) from an apartment or 2) involuntarily.

So, we will try to predict **regions of the city where a lot of people have sold their homes.**

... is this specific enough? (No! Why not?)

45

MULTIPLE LISTING SERVICE®

Real Property Parcel Search

If you're having trouble using this site, visit the page directly at \underline{k}

Real Property Information

This site is a subset of the NYS Real Property System. It is composed of the most commonly referenced information.

All information is for public use.

Information as of: July, 2021

Erie County does not assume any liability associated with the use or misuse of this data.

Search Applications Requirements

o Microsoft Internet Explorer or Microsoft Edge (Chrome, Firefox, and Safari are not supported)

Enter ONE of the fields below to begin your search:

Real Property Information

Parcel Status	ACTIVE	City\Town	Buffalo	Village	
S-B-L	110.68-4-11	Owner	EICHEL JOHN R	SWIS	140200
Property Location	29 OJIBWA CIR	Mailing Address			
Property Class	210 1 FAMILY RES	Line 2			
Assessment	810000	Line 3			
Taxable	810000	Street	29 OJIBWA CIR		
Desc	269.32 E WATERFRONT CIR	City/State	BUFFALO NY		
Desc		Zip	14202		
Deed Book	11332	Deed Page	7562		
Frontage	49.62	Depth	87.75	Acres	0
Year Built	2016	Square Ft	2910		
Beds	3	Baths	2.5		
FirePlace	2	School	BUFFALO SCHOOL DIST		
Owner History	Tax Payment History				

Google maps

2/6/22

Real Property Information

Parcel 140200 110.680-4-11.000		-11.000	29 OJIBWA CIR EICHEL JOHN R											
Year	Cycle/Desc	Insti	InRem	Bill No.	Principal	Adjust	Credit	Fee	Pd Intr	Paid	Balance	Interest	Total Bal	Payer Information
2022	1-County Tax	01		56772	4,072.90	0.00	0.00	0.00	0.00	0.00	4,072.90	0.00	4,072.90	n/a
2021	1-County Tax	01		56797	4,082.86	0.00	0.00	0.00	0.00	4,082.86	0.00	0.00	0.00	dovenmuehle mortgage, in
2020	1-County Tax	01		56792	3,848.38	0.00	0.00	0.00	0.00	3,848.38	0.00	0.00	0.00	dovenmuehle mortgage, in
2019	1-County Tax	01		56827	3,665.35	0.00	0.00	0.00	0.00	3,665.35	0.00	0.00	0.00	dovenmuehle mortgage, in
2018	1-County Tax	01		57101	3,567.09	0.00	0.00	0.00	0.00	3,567.09	0.00	0.00	0.00	whaley douglass g
2017	1-County Tax	01		57240	175.61	0.00	0.00	0.00	0.00	175.61	0.00	0.00	0.00	whaley douglass g
2016	1-County Tax	01		57383	161.81	0.00	0.00	0.00	0.00	161.81	0.00	0.00	0.00	1094 group IIc
2015	1-County Tax	01		57499	148.28	0.00	2.19	0.00	2.19	148.28	0.00	0.00	0.00	n/a
2014	1-County Tax	01		57599	146.72	0.00	0.00	0.00	0.00	146.72	0.00	0.00	0.00	1094 group IIc
2013	1-County Tax	01		57901	148.18	0.00	0.00	0.00	0.00	148.18	0.00	0.00	0.00	1094 group llc
2012	1-County Tax	01		58061	149.24	0.00	0.00	0.00	0.00	149.24	0.00	0.00	0.00	1094 group IIc
2011	1-County Tax	01		57944	145.97	0.00	0.00	0.00	0.00	145.97	0.00	0.00	0.00	1094 group IIc
2010	1-County Tax	01		271	148.96	0.00	0.00	0.00	0.00	148.96	0.00	0.00	0.00	1094 group IIc
2009	1-County Tax	01		271	142.67	0.00	0.00	0.00	0.00	142.67	0.00	0.00	0.00	1094 group IIc
	Balance as of										4,072.90	0.00	4,072.90	

Go To Tax Inquiry/Make Payment Online!

*Erie County is not responsible for clerical errors, omissions, or errors caused by taxpayers paying on the wrong property. Notify your City or Town Assessor for any error in name, property description and change of tax bill address.

Real Property Information

Owner	1094 GROUP LLC	Book-Page/Date	11127-0599 * 3/26/2007 *
Owner	WHALEY DOUGLASS G/STEPHANIE	Book-Page/Date	11298-2183 * 6/30/2016 *
Owner	EICHEL JOHN R	Book-Page/Date	11332-7562 * 8/3/2018 *

				Verified as of	01/20/2022
Search	Results Document				
Party	Document Type Instrument	Number	Book/Page	Map Number	
Book / Pag	де Туре	ALL BC	OKS	~	
Book / Pag	ge	11298	/ 2	183	Clear Search
		Numbers	(e.g., 12345/1234	·)	
Limit searc	h to maximum records		Rows		
Display rec	cords per page		Rows per page		

Document

Click Search Tab to initiate new search.

Print Besults			* Des	signates From	Party Record	ds with Status Other than V or B = Not Ver	ified Record	
			Re	ecords with Flag: R	<pre>{ = Replaced R</pre>	lecord, $C = Co$	rrection Record Click View to See Docur	ment Details
	Name	Cross Party	Date	Туре	Book	Page	Legal	Instr#
View	* 1094 GROUP LLC	WHALEY DOUGLASS G	06/30/2016	DEED	11298	2183	CTY 14 S9 C3353	20161353
View	WHALEY DOUGLASS G	1094 GROUP LLC	06/30/2016	DEED	11298	2183	CTY 14 S9 C3353	20161353
View	WHALEY STEPHANIE	1094 GROUP LLC	06/30/2016	DEED	11298	2183	CTY 14 S9 C3353	20161353

Help?

2019-2020 Assessment Roll Government

This dataset contains information pertaining to the assessed value of properties within the City of Buffalo. Accurate property inventory/information is vital to an equitable assessment and the City of Buffalo is committed to providing fair and equitable assessments in each annual Assessment Roll so that property owners pay only their fair share of property taxes.

Featured Content Using this Data

To come back to

- Yikes, right?
- This semester we're gonna talk about some of this stuff
 - Should I really be using this data?
 - Does the world really need this model?
 - Is this model serving everyone and not just the "majority class"?

Data

 Comprises all house purchases and tax information in Buffalo from 1995 to the present

 Contains 116,438 transactions on all 51,425 homes in the city as of June, 2020

BREAK! (3 minutes)

Kahoot Test

Selecting a model (simplified)

Outcome: Number of homes bought/sold this year

Example – Supervised linear regression

Outcome: Number of homes bought/sold this year

Selecting a model (simplified)

Outcome: Number of homes bought/sold this year

Is a line the only way?

Outcome: Number of homes bought/sold this year

Can we build a better model?

Is a line the only way? No!

Outcome: Number of homes bought/sold this year

Is a line the only way? No! But careful of overfitting!

Outcome: Number of homes bought/sold this year

Bias/Variance Tradeoff

Source: Coursera's ML course, taught by Andrew Ng

AdaBoost Classificatio	n Trees adaboost		0					
Adaboost Glassificatio	on trees	adab0031		Bayesian Rid		bridg		
AdaBoost.M1	AdaBoost.M1		С	Bayesian Rid Averaged)	Bayesian Ridge Regression (Model			
Adaptive Mixture Disc	High Dimensio	nal Discriminant Analysis	hdda		Classification	HDclassif		
Adaptive-Network-Ba Inference System	High-Dimensio Discriminant A	nal Regularized nalysis	hdrda		Classification	sparsedisc	crim	
Adjacent Categories F	Hybrid Neural I	Fuzzy Inference System	HYFIS		Regression	frbs		
for Ordinal Data	Independent C	omponent Regression	icr		Regression	fastICA		
Bagged AdaBoost	k-Nearest Neig	hbors	rs kknn			kknn		
Bagged FDA using gC	k-Nearest Neig	hbors	knn		Classification, Regression			
Bagged Flexible Disc	Knn regression sklearn.neighb	via ors.KNeighborsRegressor	pythonKnnReg KNeighborsRegressor		Regression	rPython		
Bagged Logic Regres	L2 Regularized Machines with	Linear Support Vector Class Weights	svmLine	arWeights2	Classification	LiblineaR		
Bagged MARS	L2 Regularized (dual) with Line	Support Vector Machine ar Kernel	svmLine	ar3	Classification, Regression	LiblineaR		
Bagged MARS using	Learning Vecto	r Quantization	lvq		Classification	class		
Bagged Model	Least Angle Re	ast Angle Regression lars			Regression	lars		
	Least Angle Re	gression	lars2		Regression	lars		
Bayesian Additive Re	Least Squares	Support Vector Machine	IssvmLir	near	Classification	kernlab		
	Least Squares with Polynomia	Support Vector Machine	IssvmPo	ly	Classification	kernlab		

oridge	Extreme Learn	ning Machine	elm	Classif Regres	ication, sion	elmNN	
lasso/	Factor-Based Analysis	Linear Discriminant	RFlda	Classification		HiDimDA	
-	Flexible Discriminant Analysis		fda	Classification		earth, mda	
	Fuzzy Inference	ce Rules by Descent					
	Method	Model Averaged Neural Network	avNNet	Classification, Regression	nnet		
2	Fuzzy Rules L	Model Rules	M5Rules	Regression	RWeka		
	Fuzzy Rules L	Model Tree	M5	Regression	RWeka		
	Fuzzy Rules L	Monotone Multi-Layer Perceptron Neural Network	monmlp	Classification, Regression	monmlp		
Ĩ.	Competitive L	Multi-Layer Perceptron	mlp	Classification, Regression	RSNNS		
	Fuzzy Rules L Learning Algo	Multi-Layer Perceptron	mlpWeightDecay	Classification, Regression	RSNNS		
	Environment	Multi-Layer Perceptron, multiple layers	mlpWeightDecayML	Classification, Regression	RSNNS	_	
e.	Fuzzy Rules v	Multilayer Perceptron Network by Stochastic Gradient Descent	mipSGD	Classification, Regression	FCNN4R, pl	yr	
	Fuzzy Rules v	Multilayer Perceptron Network with	minKaraaDranaut	Classification,	karaa		
	Fuzzy Rules v	Dropout	mprerasbropour	Regression	Kelds		
ŕ.	Gaussian Pro	Multilayer Perceptron Network with Dropout	mlpKerasDropoutCost	Classification	keras	ab	
	Gaussian Pro Kernel	Multilayer Perceptron Network with Weight Decay	mlpKerasDecay	Classification, Regression	keras	ab	
	Gaussian Pro					a la	
	Function Kerr	Multilayer Perceptron Network with Weight Decay	mlpKerasDecayCost	Classification	keras	aD	
	Generalized A LOESS	Multi-Layer Perceptron, with multiple	mlpML	Classification,	RSNNS		
	0	ayers Multi-Step Adaptive MCP-Net	msaenet	Classification,	msaenet		

-

@_kenny_joseph

Actual Model

How do we train a model?

Outcome: Number of homes bought/sold this year

How do we train a model?

Number of crimes tomorrow

Find the one that minimizes some objective function

SSE – sum of squared errors

Number of arrests made today

Evaluating regression models

Number of arrests made today UB

Evaluating regression models (cont.)

V+

- 1. Make predictions for some text points
- 2. Get the error of those predictions
- 3. Make some aggregate statement about those

errors ... like what?

Number of arrests made today

2/6/22

77

